
Jo Atlee • CRSC • July 2021

Waterloo Formal Methods

Feature-Oriented Requirements:
The Good, the Bad, and the Ugly

software in the Boeing 737 MAX 8

Boeing 737 MAX 9 (c) Clements Vaster, CC BY 2.0

Fault tolerant design
Software testing
Safety/failure analysis
Certification
Software evolution
User-interface design

Feature interactions

N
ot

 ta
lk

in
g

ab
ou

t t
od

ay

http://creativecommons.org/licenses/by-nc-sa/2.0/

some preliminaries

feature-oriented software

stakeholders’
mental model of system

feature-oriented
software system

Cruise Control

Stability Control

Anti-Theft
Cruise
Control

Stability
Control

Anti-
Theft

Cruise Control

feature: a unit of added-value

features
comparison shopping

features
incremental development

© Henrik Kniberg

features
third-party functionality

HUD

feature interactions
feature interaction: features that behave well when executed in
isolation, but behave in different, expected, or undesired ways
when they execute together

feature interactions manifest themselves as
› conflicting actions
› nondeterminism
› resource contention
› performance degradation
› violated global correctness property
› inhibited behaviours
› emergent behaviours

2010 Toyota Prius

hybrid brake system
› (normal) hydraulic brake system
› regenerative braking system
- converts loss of vehicle momentum into electrical energy
- stored in on-board batteries

anti-lock brake system (ABS)
› maintains stability, steerability during panic braking

interaction
› braking force after ABS actuation is reduced
› vehicle stopping distance is increased
› 62 reported crashes, 12 injuries

hybrid brakes ⨁ anti-lock braking
U.S. NHTSA, (https://www.nhtsa.gov/vehicle/2010/TOYOTA/PRIUS/4%252520DR/FWD#investigations)

cruise control ⨁ traction control

cruise control
› vehicle set to maintain driver-specified speed

traction control
› brake fluid applied when wheels slip

interaction
› engine power is increased (to maintain speed)
› driver senses “sudden acceleration”
- vehicle becomes difficult to control

resolution
› advise drivers not to use cruise control on slippery roads

good interactions

not all interactions are bad!

unintended but harmless interactions
› call screening prevents activation of caller id

(planned) resolutions to conflicts
› brake override overrides (acceleration ⨁ braking)

intended interactions
› advanced cruise control extends basic cruise control
› prohibit navigation overrides navigation
› prohibit-navigation override overrides prohibit-navigation

all interactions require work

• verify intended interactions

• detect unexpected interactions

• analyze them for undesired interactions

• fix undesired interactions
- faulty feature
- disallow feature combination
- resolve interaction

• test the fixes

bad interactions

Boeing 737 MAX 8 – pitch control

Tail of a conventional aircraft (c) Olivier Cleynen, CC BY-SA 3.0

Horizontal Stabilizer
rotating the stabilizer

pushes tail up and nose down
(and vice versa)

Elevators
pivoting the elevators upwards
creates a downward force that
pushes tail down and nose up

(and vice versa)

https://creativecommons.org/licenses/by-sa/3.0

features that affect pitch control surfaces

Manual
Trim

Wheel

Elevator
Feel

Computer Mach
Trim

Speed
Trim

Auto
pilot
Trim

Elect.
Trim

Switch
MCAS

elevator

horizontal
stabilizer

pilot controlled software controlled

STAB TRIM
cutoff

switches

Control
Column
Cutoff

Control
Column
(yoke)

MCAS

MCAS rotates the
horizontal tail to nudge the
tail up and nose down

Activates under strict conditions
• High G-force (upward acceleration)
• Angle of attack is high
• Autopilot off
• Flaps are up

Has limited impact
• Moves horizontal stabilizer at most 0.6

degrees
• Deactivates when pilot applies trim

(image derived from norebbo.com templates)

MCAS
Activates under looser conditions

• High G-force (upward acceleration)
• Angle of attack is high
• Autopilot off
• Flaps are up

More powerful
• Moves horizontal stabilizer 2.4 degrees
• Deactivates when pilot applies trim

evolves to MCAS’

Changes to pilot cut-offs
• Cut-off switches deactivate electric trim as well as automatic trim
• Disables control column cut-off capability

MCAS is poorly communicated to pilots

Activates under strict conditions
• High G-force (upward acceleration)
• Angle of attack is high
• Autopilot off
• Flaps are up

Has limited impact
• Moves horizontal stabilizer at most 0.6

degrees
• Deactivates when pilot applies trim

disabling the pilots’ most ingrained
means of stopping Automatic Trim

can engage under the same conditions and
can have conflicting actions

MCAS can trim the nose by 2.4 units per
cycle, which is faster than pilot’s ability to
trim the nose
• automated trim with flaps up is limited to 0.09 deg/sec
• MCAS moves at 0.27 deg/sec
• pilot’s trim with flaps up is limited to 0.2 deg/sec

feature interactions (Lion Air Flight 610)

1)

2)

3) resets

4) inhibits

Elect
Trim

Switch
MCAS’

Elect
Trim

Switch
MCAS’

MCAS’

Speed
Trim

MCAS’
Control
Column
Override

Control
Column
(yoke)

allowing MCAS to re-engage repeatedly

1) inhibits

2) resets

3)

4)

disabling the pilots’ most ingrained
means of stopping Automatic Trim

allowing MCAS to engage repeatedly

MCAS can severely mis-trim the nose so
that pilots are unable to maneuver the
stabilizer appreciably nose up

because features apply automatic trim
routinely, they can mask MCAS actions

feature interactions (Ethiopian Airlines Flight 320)

Elect
Trim

Switch
MCAS’

MCAS’

MCAS’ Speed
Trim

Control
Column
(yoke)

Manual
Trim

MCAS’
Control
Column
Override

Auto
pilot
Trim

F1⨁ F2 ⨁ ���⨁ Fn⊭ Φ1 ∧Φ2 ∧ ��� ∧ Φn

detecting interactions (violations of feature specifications)

F1 ⊨ Φ1

F2 ⊨ Φ2

Fn ⊨ Φn

��
�

executable
model of
feature

property of feature

feature composition (= product)

detection is not always obvious

Manual
Trim

Wheel

Speed
Trim

Auto
pilot
Trim

Elect.
Trim

Switch
MCAS

disables

overrides overrides

priority

over

priorityover
Control
Column
Cutoff

overrides

the only obvious interaction was intended

› Pat forwards all of her calls to Ana
› Sal calls Pat
› The call attempt fails (no answer)

Whose Voicemail should activate?

best resolution is not always obvious

• what if Pat is a sales group and Ana is a sales representative?

• what if Pat is on a long leave of absence?

Voicemail

Pat’s features Ana’s featuresSal

Call Forward
(Forward to Ana)Voicemail

nonmonotonic resolutions
(Veldhuijsen’95)

a new feature can change the requirements of existing features

• nonmonotonic extensions
– e.g., hybrid brakes ⊕ anti-lock brakes

• violation of invariants / assumptions
– for almost any interesting invariant, there is often an interesting feature that

would violate it

• changes to definitions of terms
– e.g., refinement of the notion of being busy
– e.g., evolution of a call
– e.g., evolution of phone directory; private numbers

the ugly: scalability

lots of features

a system of feature-rich systems
› features from multiple providers
› multiple active versions of the same feature

provider’s
features

device’s
features device’s

features

PBX
features

provider’s
features

telephony, automotive software have 1000+ features

control-flow

data-flow

data modification

data conflict

control conflicts

assertion violation

resource contention

lots of types of interactions

one feature affects the flow of control in another feature

one feature affects (deletes, alters) a message destined for another feature

shared data read by one feature is modified by another feature

two features modify the same data

two features issue conflicting actions

one feature violates another feature's assertions or invariants

the supply of resources is inadequate, given the set of competing features

lots of interaction instances
Griffeth, Blumenthal, Grégoire, Ohta, “A feature interaction benchmark for the first feature interaction detection
contest., Computer Network, 2000.

Call Forward
on Busy Call Number

Delivery

Terminal Call
Screening

Freephone
Billing

Freephone
Routing

Teen
Line

Three-Way
Calling

Call Forward
Universal

Call
Waiting

Charge
Call

Return
Call

Cellar
Phone
Billing

1
2
3
4
9

interations

introduced in several phases
Bowen, SETSS’89

[requirement] understanding / specifying how features ought to
interact

[requirement] the number of interactions (and resolutions) to
consider grows exponentially with the number of features

[design] more interactions introduced during design due to sharing of
resources, I/O devices, protocol signals, etc.

[implementation] near-commonalities among features leads to
questions about how to effectively reuse software components

[test] the sheer number of possible interactions and intended
resolutions to be tested lengthens the testing phase

resolutions as new requirements
F1 = f1

+ ef2 + ef3 + ef4 + ef5 + ef6 + ef7 +…+ efn
+ ef2f3 + ef2f4 + … + ef2fn + … + efn-1fn

+ ef2f3f4 + ef2f3f5 + … + efn-2fn-1fn…
+ ef2f3f4f5f6…fn

this is exactly the chore that feature-orientation was
meant to avoid!

in search of general strategies

degrees of resolution perfection

› fixed set of features

›pre-determined
selection of features

›static integration

›perfect coordination
possible

›changing set of features

›configurable

›set of static integrations,
dynamic upgrades

›safe, predictable, “good
enough” coordination

›unlimited features

›user-defined
selection of features

›dynamic integration

› loose coordination

HUD

example #1 - serialization
Distributed Feature Composition [Jackson, Zave, TSE’98]

+ features make no assumptions about other features
+ avoids simultaneous reactions to the same event
+ conflicts are resolved through serialization
+ feature ordering realizes a priority scheme

device
feature

constrain information flow: features react to signals in sequence

device
feature

provider
feature

work
feature

provider
feature

device
feature

device
featuredevice

feature
provider
feature

provider
feature

provider
feature

provider
feature

provider
feature work

featurework
featurework

feature

provider
featureprovider

featureprovider
featureprovider

featureprovider
featureprovider

feature
device
feature

device
feature

device
feature

device
feature

device
feature

actuator actuator

conflicting(?)
actions on
attribute

resolved
action on
attribute

actuator
command

actuator

control
logic

(optimization)

resolution
(attribute n)

resolution
(attribute m)resolution

(attribute 3)

control logic
(opt realization)

control logic
(opt realization)

control logic
(opt realization)

control
logic

(optimization)

control logic
(opt realization)

resolution
(attribute 1)

sensorssensorssensorssensors

resolution
(attribute 2)

example #2 – resolution modules
Continuous Variable-Specific Resolution of Feature Interactions [Zibaeenejad, Zhang, Atlee, FSE’17]

+ features make no assumptions about other features
+conflicting actions are resolved by resolution modules
+all feature actions are considered in resolution
+resolution strategies are programmable (can be variable- or actuator-specific)

actuator
feature
actuator
feature
actuator
feature
actuator
features

actuator
feature
actuator
feature
actuator
feature
actuator
features

actuator
feature
actuator
feature
actuator
feature
actuator
features

featuresfeaturesfeaturesfeaturesfeaturesfeatures

resolve conflicts per actuator

Interactions with devices distinct from interactions among actors

example #3 – device atomicity + actor coordination
A Component Architecture for the Internet of Things [Brooks, Jerad, Kim, Lee, Lohstroh, et al. Proc. of the IEEE, 2018]

+devices execute concurrently, asynchronously
+devices’ events are handled atomically (asynchronous atomic callback functions)
+actors and proxies coordinated by timed event-driven semantics
+devices, proxies, actors make no assumptions about each other

time-ordered
event stream actor

actor

ACC ACCACC

ACCACC

ACC

actor

thing thing
thing

thing

proxyproxy

proxy proxyproxyproxy

verifying coordinated features

F1⨁ F2 ⨁ ���⨁ Fn ⊫ ?
feature coordination

verifying that the behaviour of features coordinated by an
architecture is safe, predictable, good enough

living with feature interactionsfeature-oriented software development

stakeholders’
mental model of system

feature-oriented
software system

Cruise Control

Stability Control

Anti-Theft
Cruise
Control

Stability
Control

Anti-
Theft

Cruise Control

feature: a unit of added-value

state-of-the-art: feature coordination

› fixed set of features

›pre-determined
selection of features

›static integration

›perfect coordination
possible

›changing set of features

›configurable

›set of static integrations,
dynamic upgrades

›safe, predictable, “good
enough” coordination

›unlimited features

›user-defined
selection of features

›dynamic integration

› loose coordination

feature coordination

death by exceptions
F1 = f1

+ ef2 + ef3 + ef4 + ef5 + ef6 + ef7 +…+ efn
+ ef2f3 + ef2f4 + … + ef2fn + … + efn-1fn

+ ef2f3f4 + ef2f3f5 + … + efn-2fn-1fn…
+ ef2f3f4f5f6…fn

this is exactly the chore that feature-orientation was
meant to avoid!

verifying coordinated features

F1⨁ F2⨁ ���⨁ Fn ⊫ ?
feature composition

verifying that the behaviour of features coordinated by an
architecture is safe, predictable, good enough

